Principia, el nuevo principio de JoFCiencia

BuluNZ6IAAEzJP3

Descubrí JoFCiencia en el número 3 y me quedé admirada con la calidad de sus artículos. El verano pasado, habiéndome convertido en una lectora fiel, encontré en la reseña de Molinos del libro “Está usted de broma Mr. Feynman”, del número 11, un enlace a un post de mi blog. Como seguidora de la autora y de la revista, mi satisfacción fue máxima y se lo agradecí a ambos. Fue entonces cuando tuve el honor de que Enrique Royuela, el director de la revista y “jofe” del cotarro, me invitase a formar parte del equipo de redacción.

Tal y como ya han dicho grandes “joferos”, cuando alguien de la calidad humana y profesional de Enrique te propone un proyecto de divulgación científica, la única respuesta cabal es “sí”. Sabes que pasarás a formar parte de un equipo de grandes personas apasionadas por la ciencia, de excelentes divulgadores con los que he tenido el placer de vestir de contenidos los diferentes números.

captura-de-pantalla-2014-07-31-a-las-00-20-29

Se suele decir que todo lo bueno se acaba pero me parece una afirmación demasiado inexacta y deprimente. En algunos casos lo bueno se reinventa, evoluciona. Este es el caso de JoFCiencia. El número 16 ha sido el último número publicado de la revista pero tanto éste como los quince anteriores seguirán disponibles para que podáis descargarlos y leerlos con tranquilidad.

Mientras tanto se está gestando un nuevo comienzo del que puedo adelantar que seré parte integrante. El “jofe” volvió a preguntarme si me apuntaba a la nueva aventura y como a estas alturas ya os imagináis, le dije que sí al instante.

Todavía no puedo revelaros los secretos de Principia i.o. (@Principia_io) pero sí puedo aseguraros que rezumará pasión por la ciencia y compromiso con la divulgación. La puerta está abierta para todo aquel dispuesto a acercar la ciencia y respetar nuestro decálogo ¡os esperamos!

 Bubo1guCUAAD72-

Publicado en Divulgación | Etiquetado | 5 comentarios

Las calles de arena de Paco Roca, el mejor destino para perderse

las-calles-de-arena

La otra tarde me perdí por Las calles de arena. A través de sus páginas, emprendí un viaje fascinante y demoledor hasta el interior de mí misma. Mis miedos y sentimientos quedaron expuestos en un Barrio surrealista y onírico que me interrogaba, en cada esquina, sobre la libertad entre asumir un destino que parece inevitable o dibujar uno nuevo.

El libro de Paco Roca es, sin lugar a dudas, una de las obras literarias más impresionantes y conmovedoras que he leído. Por ello, no puedo hacer más que recomendároslo. No escribiré una reseña al uso porque no soy ninguna experta en el noveno arte, me limitaré a exponeros las razones que, en mi opinión, lo hacen imprescindible. A pesar de que está definido como novela gráfica, me referiré a él como lo que creo que es: un tebeo. Lo de “novela gráfica” me parece un término que se han inventado para captar a un público que cree que los tebeos son para niños o para frikis con ligerillos problemas sociales de comunicación. Nada más lejos, existen tebeos de todas las temáticas que pueden gustar a personas muy diversas. Así que, sin más dilación, perdámonos en este.

ARGUMENTO O FONDO

“Hoy es la última oportunidad que te doy. Si quieres vivir en la luna, será sin mí. ¿Entiendes?”

La historia se inicia cuando nuestro protagonista recibe un ultimátum por parte de su novia: puede optar por seguir en su mundo de ficciones o comprometerse de una vez con el mundo real. Elige la segunda opción, la que parece razonable y va al encuentro del destino que ya ha empezado a escribir. Pero no lo hace con las manos libres, emprende ese camino cargado de una figura gigante de Corto Maltés, un lazo con el mundo imaginario que todavía no quiere romper.

las-calles-de-arena-paco-roca

Tiene poco tiempo para llegar a la cita con su novia, así que decide tomar una ruta alternativa por el barrio de arena y se adentra en un universo misterioso y surrealista del que no podrá salir. En él se verá obligado a refugiarse en el hotel La Torre, que podría identificarse con el infinito hotel de David Hilbert, y que guarda un parecido asombroso con la Torre de Babel del pintor flamenco Pieter Brueghel. En él, verá sus temores personificados en los inquilinos más variopintos: los amores imposibles y no correspondidos de la Sr. Esther, el Sr. Rueda y el Sr. Rosendo de los Vientos; la inseguridad del Coronel Francisco Piedra, la soledad de la cartera oficial del barrio Blanca; el miedo a la muerte del Sr. Soto, el de perder la memoria del Conde Diógenes y, finalmente, la angustia que siente por no ser capaz de salir de este nuevo escenario y recuperar su vida, por haberse convertido en un hombre sin nombre.

Pero la convivencia y el trato con los diferentes personajes le cambian. Las calles de arena, fantasmagóricas y opresoras en un inicio, se convierten en un hogar posible, la pesadilla evoluciona a sueño y conduce a un final tan magistral como coherente. Una lámina que rubrica la obra maestra.

FORMA

A mi modo de ver, el mejor dibujo para un tebeo no es el que cuenta con una mayor calidad técnica o artística sino el que refleja la idea que transmite el guión. En ocasiones, como el magnífico libro del mismo autor, Arrugas, el guión lleva la principal carga de contenido y sólo necesita buenos dibujos que lo expresen. En otras, como en el caso que nos ocupa, se establece un equilibrio perfecto entre guión y dibujos a través de la excelencia mutua. En cada una de las láminas de Las calles de arena la brillantez de la historia se ve sublimada por el preciosismo pictórico que la cuenta.

Cada personaje está caracterizado por un color que le define con mayor profundidad que sus palabras, habla por él. Las líneas suaves de sus expresiones dejan al descubierto lo que sienten. La naturaleza imaginaria e irreal del universo en el que se desenvuelven se consigue a través de un grafismo rico en detalles que se complementa con la extensa gama de colores que permite el viaje del mundo onírico al real.

paco_roca_calles_arena_p2

REFERENTES

“Las calles de Arena” esconden una gran cantidad de referentes literarios. En su texto se aprecia la huella de los escritores más destacados que trataron la convivencia entre fantasía y realidad. Para empezar, el título del texto se basa en el relato de Borges El libro de arena, y otros de los literatos que se vislumbran son Cortázar, Kafka, Carroll, Ionesco, García Márquez, Poe, Melville o Beckett. Pero bebe de más fuentes. La científica viene por parte de El hotel infinito de David Hilbert y en cuanto a la cinematográfica, guarda una cierta similitud con películas como El viaje de Chihiro.

Todos estos referentes enriquecen la obra pero no es necesario conocerlos para disfrutar de ella. Simplemente han inspirado al autor y están ahí.

CONCLUSIÓN

Las calles de arena es un libro para reflexionar y no caer en la autocomplacencia, una llamada al análisis de nuestra vida diaria a través del realismo mágico.  Os confesaré que, para mí, es poesía expresada en forma de tebeo. Simbolismo narrativo y visual que estremece, que se cuela en las entrañas y no te permite escapar. Pensamiento y sentimiento interrogado a lo largo de un camino vital trazado en viñetas.

pacoroca1

Publicado en Reseña | Etiquetado | 4 comentarios

Tarea veraniega

scientists on vacation

Debo confesaros que para mí el año empieza en septiembre. Sigo viviendo en años académicos y antes del descansito veraniego de agosto es buen momento para hacer balance del pasado curso blogueril y daros las gracias una vez más.

Este “año” ha sido aún mejor que el anterior y eso me parecía del todo imposible. Los momentos más especiales que he vivido se los debo a la divulgación y el blog es una parte muy importante de la misma, seguramente, la más mía y cercana. Y sobrevive gracias a vosotros que decidís dedicar parte de vuestro tiempo a pasaros por aquí y darle sentido a todo esto. Todo vuestro cariño me da fuerzas para seguir adelante. Cada uno de vosotros merece todo el tiempo y esfuerzo que le dedico al blog.

Este curso pasado he tenido la gran suerte de conocer y trabajar con divulgadores que admiro profundamente. Tomé parte como Naukas en las charlas del Naukas Quantum y ya espero estrenarme en septiembre en mi primer Naukas Bilbao; escribí sobre Carl Sagan y Menuda Ciencia en la excelente revista digital JoF Ciencia, que acaba de publicar su último número para evolucionar a un nuevo proyecto; inicié mi colaboración en el blog de física médica Desayuno con fotones describiendo las peripecias de Radiactivo Man y hablé de Juan de la Cierva en el blog de la Asociación de Divulgación de la Región de Murcia. Finalmente, gracias al I Certamen de Cuentos de Ciencia, que organizó Dan de Cuantos y Cuerdas, volví a escribir poesía y descubrí los Scikus.

Por lo que a las ondas se refiere, me siento especialmente afortunada de haber podido participar en mis dos programas de radio favoritos. En Pa ciència, la nostra estrené La Centripetadora”, la sección sobre la ciencia más on-fire del momento, la física, y voy a seguir haciéndolo la próxima temporada (¡Ole!). En La Buhardilla 2.0 me dieron la oportunidad de cocinar un platito del día sobre Marie Curie, por vía telefónica, y otro sobre Röntgen en los propios estudios de Sevilla Web Radio dónde se gesta el programa. Todo un lujazo. Aunque lo mejor, sin comparación, ha sido conocer personalmente a Abraham, Kike, Javi y Álvaro.

Para acabar, quiero compartir con vosotros el gran honor que ha supuesto para mí ser galardonada con un segundo Premio ED de César Tomé, compartido con un divulgador que admiro tanto como José M. Morales (El Zombi de Schrödinger), y con el Premio It’s Science Bitches de Emilio Capitel.

LOS DEBERES

Mientras el blog recarga baterías, deseo que paséis unas buenas vacaciones y estéis entretenidos. Por ello, para evitar que os pase lo que a Sheldon Cooper y para leeros, os pongo deberes. Quiero lanzaros una pregunta sobre la cual he reflexionado en muchas ocasiones y tengo gran interés por conocer vuestra opinión:

pizarra copy

Publicado en Divulgación | 48 comentarios

Trilogía de las Auroras Polares (III): Las Teorías

14013764893_85b0c30bdb_o

Sir Edmund Halley, en 1716, contempló la aurora más bella del siglo XVIII. Su descripción se considera el primer hallazgo científico y continúa siendo válida hoy en día: “los rayos aurorales son debidos a las partículas, que son afectadas por el campo magnético; los rayos son paralelos al campo magnético de la tierra y la forma semejante a una bóveda es debida a los fenómenos de perspectiva”.

Otra teoría de esa época  proponía que la creación de las auroras se debía a la erupción de un gas proveniente del suelo que al tiempo podía causar terremotos. Por tanto, la presencia del fenómeno auroral, en este caso, era muy beneficioso puesto que disminuía la cantidad de “gas de terremotos” y con ello, el número e intensidad de los mismos.  En 1733, el científico francés Mairan publicó un extenso tratado sobre la Aurora boreal en el que implicaba la reflexión de la luz proveniente de los cristales de hielo en el aire de las regiones polares. Entre la multitud de teorías de aquel entonces, las más comunes otorgaban el papel clave del proceso a un gas ardiente.

En 1741, el físico y astrónomo sueco Anders Celsius, junto a su asistente Peter Hjorter aportaron el segundo hallazgo científico sobre las luces del norte al observar que la actividad magnética y la aurora boreal estaban conectadas. El tercero vino de la mano del químico y físico Henry Cavendish que, en 1790, obtuvo un resultado casi correcto en el cálculo de la altitud de la aurora. Sin embargo, su valor no fue determinante en la evolución del conocimiento sobre dicho parámetro puesto que,  cien años más tarde,  todavía había investigadores con una idea totalmente equivocada de la altitud de la aurora. En Rusia, la investigación fue iniciada por Mikhail Vasilievich Lomonosov, la principal figura de las letras y las ciencias rusas del siglo XVIII. Este creyó que la aurora se producía en el norte por la existencia de un mar sin congelar en algún lugar del océano Ártico y dedicó su vida a la búsqueda del mismo.

Durante el siglo XIX se determinó con mayor precisión la distribución de la frecuencia de las auroras y gracias a la observación de 1859, la relación entre las erupciones solares y la ocurrencia del suceso.  Pero nadie fue capaz de explicar el origen de la emisión de luz hasta que el sueco Ångström mostró pruebas válidas de que dicha emisión se debía a un gas. La era de la investigación sistemática comenzó durante los años 1882-83 con la organización del primer Año Polar Internacional, en el que se hicieron mediciones simultáneas en diferentes localizaciones cerca de la región polar. Sin embargo, antes de comenzar el año Polar, el danés Sophus Tromholt, publicó una descripción precisa del comportamiento global de la Aurora boreal y poco después, el sueco Carlheim – Gyllensköld proporcionó otra similar.

11307337496_bce26ed568_o

Los secretos de la Aurora fueron revelados a principios del siglo XX por los profesores noruegos Kristian Birkeland y Carl Störmer. El primero afirmaba que la Aurora boreal está asociada a un gran sistema de corrientes eléctricas que cubría todo el espacio cercano a la tierra y se desplazaban en las regiones aurorales tanto horizontalmente como verticalmente a lo largo de las líneas del campo magnético. Las corrientes eléctricas paralelas al campo magnético se conocen como corrientes Birkeland y fueron medidas en la década de 1970. En cuanto a Störmer, ya en 1907, fue capaz de calcular las trayectorias de las partículas cargadas. Sin embargo, no fue hasta el año Geofísico Internacional, que las mediciones por satélite otorgaron a su trabajo la relevancia que merecía y pusieron de manifiesto la complejidad del acontecimiento. Corresponde ahora tratar su verdadera naturaleza.

En la formación de las auroras polares intervienen tres actores esenciales:

1. El viento solar

2. Los campos magnéticos, terrestre e interplanetario

3. Los cinturones de radiación

Estos tres personajes interpretan el amplio repertorio de auroras y determinan sus características y variantes.

El viento solar

La Tierra está constantemente inmersa en el llamado viento solar, que consiste en un plasma (gas caliente de electrones e iones positivos) que emite el Sol en todas direcciones. Tiene su origen en la capa más externa del sol, la corona solar, que se halla a una temperatura de alrededor de un millón de kelvin. En estas condiciones, la energía térmica es capaz de arrancar los electrones de sus respectivos átomos y generar el plasma. Debido a la abundancia de hidrógeno, se compone fundamentalmente de protones y electrones libres con una densidad de alrededor de 5 iones/cm3 y unas energías comprendidas entre 1,5 y 10 keV.  El viento solar alcanza la Tierra a una velocidad cercana a los 400 km/s, aunque esta velocidad puede ser mucho mayor en las llamaradas solares o las eyecciones de masa coronal, en las que llega más allá de la órbita de Plutón.

Campos magnéticos. La magnetosfera

En 1600, William Gilbert (http://naukas.com/2014/05/27/william-gilbert-un-hombre-con-magnetismo/) descubrió que el campo magnético de la tierra era semejante al de un imán dipolar (barra imantada) cuyas líneas de campo forman bucles simétricos respecto al eje magnético terrestre partiendo del polo sur (norte magnético) y entrando por el polo norte (sur magnético).

Campo_ terrestre_01

Durante un largo tiempo se mantuvo este modelo y se perfeccionó incluyendo la deriva de los polos magnéticos respecto a los geográficos. Todo parecía cuadrar estupendamente sin la inclusión del viento solar, cuya presencia cambió de forma drástica el escenario.

Compuesto por partículas dotadas de carga eléctrica, el viento solar es altamente conductor y ello conlleva dos consecuencias fundamentales en la distribución espacial de los campos magnéticos presentes. En primer lugar, las cargas eléctricas en movimiento extienden el campo magnético del sol hasta los confines del sistema solar formando lo que se conoce como campo magnético interplanetario (IMF, en inglés). En segundo lugar, se produce un efecto de apantallamiento por parte del campo magnético terrestre, que representa un obstáculo para el libre paso del viento. Así, a una distancia media de 70000 km (11 veces el radio terrestre), el viento solar se separa formando un arco de choque que comprime el campo magnético terrestre por el lado del sol. En el lado opuesto, el campo queda confinado en una forma troncocónica con una larga cola que se extiende hasta más allá de 6000000 km (1000 radios terrestres).

La región donde queda confinado el campo magnético terrestre por la interacción del viento solar recibe el nombre de magnetosfera y la frontera entre ambos se denomina magnetopausa. La magnetosfera contiene gran cantidad de tenues plasmas, de diferentes densidades y temperaturas, cuyo origen es el viento solar y la ionosfera.

Los trabajos de Joan Feynman fueron fundamentales para dilucidar la forma de la magnetosfera a partir de las mediciones tomadas por una nave espacial lanzada para vigilar el cumplimiento del  tratado de prohibición de ensayos nucleares.

Esquema de un corte transversal de la magnetosfera

Esquema de un corte transversal de la magnetosfera

Detalle de la magnetosfera y sus regiones

Detalle de la magnetosfera y sus regiones

En 1961, el físico británico James W. Dungey sugirió que el campo magnético interplanetario podría unirse con las líneas del campo magnético terrestre que parten de los polos, y que este fenómeno -al que denominó reconexión magnética- se produciría con mayor facilidad cuando el campo magnético del viento solar está orientado hacia el sur, o sea, antiparalelo al campo geomagnético. El también físico británico Christopher Thomas Russell (1943, -), que lideró los experimentos sobre campos magnéticos del satélite Polar GGS de la NASA y mapeó la magnetosfera, demostró que la reconexión era un proceso inestable. Observó que las líneas de campo forman “cuerdas” y “paquetes” que, con el tiempo, se van separando de la magnetosfera y son arrastrados hacia el interior de la cola, aunque el campo magnético interplanetario permanezca constantemente orientado hacia el sur.

Cuando las partículas ionizadas del viento solar discurren por la magnetopausa (contorno de la magnetosfera) atraviesan líneas de campo reconectadas y son desviadas en direcciones opuestas según sea su polaridad, creando una corriente eléctrica. La magnetopausa, por tanto, es un gigantesco generador (denominado “generador auroral”) que convierte la energía cinética de las partículas del viento solar en energía eléctrica con una potencia calculada de más de 1 TW (1 millón de MW). A título comparativo puede decirse que es la potencia típica que pueden proporcionar 1000 centrales nucleares.

El movimiento del plasma se rige por las leyes clásicas del electromagnetismo, de modo que los iones positivos viajan hacia el lado del amanecer del plano ecuatorial de la magnetopausa en tanto que los negativos se dirigen hacia el lado del anochecer, creando así dos polos eléctricos, positivo y negativo respectivamente. Aparte del movimiento perpendicular al campo magnético terrestre, algunos electrones del plasma contenido en la magnetosfera viajan a lo largo de las líneas del campo magnético, guiadas como las cuentas de un collar, y girando al mismo tiempo alrededor de la línea. El movimiento resultante es una trayectoria helicoidal sobre las líneas de campo.

Reflejo_06a

Por tanto, parece que las partículas deberían introducirse en la atmosfera terrestre y acabarían chocando con algún átomo, al que cederían toda o parte de su energía cinética, tal como se aprecia en la figura.

Reflexión y corrientes alineadas con el campo

A medida que las partículas se acercan a la Tierra siguiendo las líneas de campo, la intensidad del mismo va creciendo por influencia directa del magnetismo terrestre que tiene un valor típico de 30 a 50 mT cerca de la superficie, mucho más fuerte que el interplanetario que es del orden de sólo 2 a 5 nT. Por ello, la pendiente del movimiento helicoidal de los electrones tiende a incrementarse a medida  que se aproximan y acaban siendo reflejados. Esta reflexión explica también la existencia de anillos toroidales, fuertemente ionizados, conocidos como Cinturones de van Allen, en honor del físico que los descubrió, y consisten en un una gran cantidad de iones atrapados que se mueven en espiral entre los polos magnéticos del planeta.

Reflejo_04b

Este proceso genera las corrientes alineadas con el campo -también conocidas como corrientes de Birkeland, quien predijo su existencia en 1908- que conectan la magnetopausa con la ionosfera mediante partículas cargadas que se mueven dentro de la región de plasma, siguiendo las líneas de campo. Las partículas, básicamente electrones, fluyen de modo que la corriente circula en dirección este por el lado naciente de la ionosfera terrestre, rodea las regiones polares y sale hacia el espacio por el lado de poniente de la ionosfera (ver figura). Obviamente, dado que la carga de los electrones es negativa y debido a la convención de signos, el movimiento real de los electrones es justamente el inverso del descrito.

La intensidad de estas corrientes alcanza el millón de amperios. Hay también unas corrientes secundarias que producen auroras en el lado del amanecer. En realidad se dan procesos de notable complejidad que escapan del alcance de esta entrada. Las palabras del Dr. Carl-Gunne Fälthammar escritas en 1986 dan idea de las dificultades: «Una razón por la cual las corrientes de Birkeland son especialmente interesantes es que, en el plasma que las transporta, producen varios procesos físicos como ondas, inestabilidades y formación de estructura fina. Estos a su vez producen la aceleración de partículas cargadas, tanto positivas como negativas, y la separación de elementos (tal como la eyección preferencial de iones de oxígeno). Ambas clases de fenómenos poseen una importancia astrofísica que va más mucho más allá de la comprensión del espacio inmediato que rodea al planeta Tierra».

Esquema de las corrientes alineadas con el campo y los sistemas de corrientes que interconectan en la ionosfera.

Esquema de las corrientes alineadas con el campo y los sistemas de corrientes que interconectan en la ionosfera.

Generación de las auroras

Las luces de la aurora se generan cuando los haces de electrones, fuertemente acelerados por los campos electromagnéticos presentes, impactan con átomos de la atmósfera. Al chocar, las partículas les transmiten parte de su energía cinética, excitándolos o ionizándolos. Al volver a su estado fundamental, el exceso de energía se convierte en radiación electromagnética. A su vez, las partículas siguen viajando y chocando con más átomos y, a medida que se mueven hacia la Tierra, la atmósfera es más y más densa con lo que aumenta la frecuencia de las colisiones y cada vez se mueven más lentamente. Cuando ya ha perdido gran parte de su energía cinética, lo que ocurre cuando llega a una altura de unos 100 km, ya no es capaz de excitar más átomos y cesa la emisión electromagnética.

Esta radiación presenta un amplio espectro de frecuencias, que va del infrarrojo al ultravioleta lejano, aunque obviamente solo resulta visible el rango de colores que percibe el ojo humano.  En el caso de las emisiones ultravioletas, únicamente son detectables desde satélites debido a la absorción de estas longitudes de onda por parte de la atmósfera terrestre, pero las imágenes tomadas por el Viking demuestran una gran actividad UV en el lado iluminado por el sol, a veces superior a la del lado oscuro.

8655689917_66a1bf5473_o

Formas y colores

Las auroras presentan muchas formas diferentes, tanto que puede decirse que no hay dos iguales. No obstante existen características que se repiten dando lugar a ciertos patrones.

Las auroras más comunes no son fáciles de describir, ya que carecen de forma. Son las que se manifiestan como un tenue resplandor a través del cielo de color verde, rojo o púrpura.

Las que puede verse corrientemente tienen forma de un arco, de bordes borrosos, que se extiende a través del cielo en dirección este-oeste. Con frecuencia el arco está formado por cintas de color blanco verdoso o verde y si se observa detenidamente se puede ver que estas cintas están compuestas por muchos rayos paralelos que siguen la dirección del campo magnético terrestre. En las auroras activas, estos rayos cambian de brillo como las llamas de una hoguera. La longitud del arco es del orden de 1000 o más kilómetros, pero su ancho puede ser de solo unos centenares de metros. La altura es de unos 100 km. Otras auroras son rojas, incluso de un rojo brillante y se encuentran a unos 200 km de altura.

El observador que está en pie directamente debajo de la aurora puede ver una corona  y, debido al efecto de perspectiva, tiene la impresión de que todos los rayos parten de un mismo punto como los rayos de sol cuando está detrás de una nube. Si se desplaza hacia el norte o el sur, cambia el efecto de perspectiva y la misma aurora aparece como un arco.

Los efectos más espectaculares ocurren durante las llamadas subtormentas aurorales descubiertas durante el año geofísico internacional de 1957-1958. Su origen son perturbaciones locales del campo magnético, denominadas tormentas magnéticas o magnetosféricas que se producen varias veces al día y duran entre 10 y 30 minutos. El primer indicio de una subtormenta es el repentino incremento del brillo de una aurora en forma de cortina, que se produce entre el atardecer hasta la media noche. El brillo se va extendiendo rápidamente a lo largo de la cortina, que comienza a moverse hacia el polo en el sector de medianoche a una velocidad de cientos de metros por segundo, dando lugar a una estructura combada. En los límites de la comba empiezan a aparecer movimientos ondulantes que se transmiten por la cortina y, cuando ésta llega a mitad de su camino alrededor del polo, en el sector del amanecer, la cortina se rompe en muchos fragmentos.

Durante las subtormentas, todo el cielo se llena de formas y colores fantásticos, que cambian rápidamente y ofrecen un espectáculo inolvidable. La fase más intensa dura normalmente unos diez minutos. Otro tipo relacionado con las subtormentas magnetosféricas es el de las auroras pulsantes, que acostumbran a producirse después de la medianoche. Aparece en el cielo un conjunto de débiles manchas de luz que se encienden y apagan independientemente durante unos pocos segundos, con diferentes velocidades. El efecto aleatorio es como una danza de brillos y oscuridades.

Aunque, como ya hemos señalado, el espectro de emisión de las auroras se extiende desde el infrarrojo hasta el ultravioleta, dentro del espectro visible los colores que más frecuentemente presentan las luces del norte son: verde (el más habitual), rojo (muy raro), púrpura y azul. Estos colores corresponden a los espectros de emisión de los gases presentes en la atmósfera y a mezclas entre ellos. Los colores se generan a diferentes alturas, al variar la composición de la atmosfera y la energía de las partículas incidentes.

Por orden decreciente de alturas (aproximadas) se tiene:

Más de 250 km:    Rojo. Oxígeno. 630 nm

200 km:    Verde. Oxígeno atómico. 558 nm

100 km:    Púrpura/Violeta. Nitrógeno. 428 nm

100 km:    Rojo. Nitrógeno. 600 – 700 nm

Espectros O-N

La emisión de luz verde por átomos de oxígeno excitados tiene una característica inusual. La mayoría de moléculas o átomos excitados vuelven a su estado fundamental, con la emisión de un fotón, en un tiempo muy breve, del orden de microsegundos o menos. Por el contrario, el oxígeno, comparativamente, toma un tiempo enorme. Cuando el fotón emitido es verde, la caída al estado fundamental se produce después de 0,75 s mientras que cuando es rojo tarda cerca de 2 minutos. Si durante este tiempo el átomo excitado choca con otro átomo de la atmosfera, le transmite su exceso de energía y no se emite ningún fotón.  Esto explica que la luz roja aparezca sólo en la parte superior de la aurora, donde la atmosfera está muy enrarecida, y porqué son tan raras las auroras rojas, que precisan una gran cantidad de energía procedente de algún fenómeno solar extraordinario.

Por  debajo de los 100 km, incluso el verde queda bloqueado por la abundancia de choques y se observa un borde inferior púrpura correspondiente a las emisiones azul/roja del nitrógeno.

Con la explicación sobre el carácter más visual de las auroras, sobre el colorido y formas que presentan, cerramos esta trilogía (entradas I y II) sobre uno de los fenómenos más bellos y excitantes de la geofísica que aún no está resuelto por completo. La resolución de sus secretos es un reto abierto.

Quiero agradecer a Paco Bellido (@ElbesoenlaLuna) que me haya permitido ilustrar la trilogía con sus fotografías. Ha sido un verdadero honor. Para poder disfrutar de su obra no dejéis de visitar sus blogs El beso de la luna y Cuaderno de viaje.

Los artículos de “Trilogía de las Auroras Polares: Las Crónicas (I), Las Leyendas (II) y Las Teorías (III)” han sido galardonados con el Premio “It´s Science Bitches” de Emilio Capitel

premio 

 

Publicado en Geofísica | Etiquetado | 8 comentarios

Röntgen, el verdadero X-Men, en La Buhardilla 2.0

roentgen

El sábado pasado, no sólo tuve el honor de cocinar un segundo platito del día para La Buhardilla 2.0 (@buhardilla) sino que, además, pude hacerlo en los estudios centrales de Sevilla Web Radio en el Centro Comercial Zona Este.

Como lectores del blog ya sabéis cuánto admiro el programa y podéis imaginar la ilusión que me hizo colaborar con a Abraham, Kike y Javi (Álvaro estaba sufriendo en la playa)  en el lugar donde se registran los Pogramas, que nunca me pierdo, en su etapa radiofónica. Ya había tenido la suerte de participar con ellos en vivo y en directo en el Pograma 100 pero, como evento especial que era, se grabó en otro lugar.

En esta ocasión, me atreví a aportar una noticia en la sección “Al lavabo con Punset” sobre Láserman (que se esconde tras la personalidad de Álvaro Peralta @ribap) y su nuevo láser de petavatios, VEGA.

???????????????????????????????

El platito del día fue sobre el único y verdadero X-Men: Wilhelm Conrad Röntgen, un científico admirable en todos los sentidos. Me gustó prepararlo pero me gustó muchísimo más verlo sazonado con los comentarios buhardilleros. Sé que mi opinión no es objetiva pero os recomiendo, de corazón, que lo escuchéis. Estoy segura de que pasaréis un buen rato. Si, a parte, tenéis interés en consultar la información que di, un poco más ampliada, podéis leer la entrada del blog Llámalo X.

En el blog de La Buhardilla 2.0 está el audio para que podáis escucharlo y descargarlo.

mano2

Publicado en Radio, Rayos X | Etiquetado , | 1 comentario

Trilogía de las Auroras Polares (II): Las Leyendas

11755441766_ff572a2ac1_o

La complejidad del fenómeno de las auroras polares es tal que su origen aún se desconocía cuando tuvo lugar la revolución cuántica y relativista. Su interpretación ha variado en las diferentes épocas, fuertemente condicionada por el contexto histórico, cultural y religioso. Existe un gran surtido de explicaciones variopintas e imaginativas, la mayoría de las cuales pertenecen a los países nórdicos que son las zonas habitadas donde el proceso se produce con mayor frecuencia. En este post viajaremos a través de ellas.

En el libro “Kongespeilet” del siglo XIII, figuran tres antiguas interpretaciones nórdicas a las que se llegó, cuando creían que la tierra era plana y estaba rodeada de océanos. Una de ellas suponía que dichos océanos, estaban flanqueados por llamas cuyo reflejo se contemplaba en el cielo. La segunda daba protagonismo al Sol que lanzaba sus rayos hacia lo alto, cuando se encontraba debajo del borde de la placa de la Tierra. Finalmente, la tercera, corría a cargo de los glaciares, que absorbían tanta energía que empezaban a brillar.

En documentos conservados en Närke y otros puntos de Noruega, aparece el antiguo nombre que se daba a la aurora en sueco, silllixt (relámpago de arenque), que describía la creencia de que las luces se formaban por el reflejo de grandes bancos de arenques.  Pero no es la única explicación que figura en estos textos. Se dice también que la aurora podía proceder de la luz de las antorchas que sujetaban los lapones cuando buscaban los renos en las montañas. Por su parte, el nombre finlandés, revontulet (zorro de fuego) se debe a la leyenda según la cual había zorros de fuego en Laponia cuyo pelaje emitía chispas al correr hacia las montañas. En otras versiones, sin embargo, consideraban que el juego de colores era provocado por el reflejo de la luna en los copos de nieve que barría la cola del animal.

Y las explicaciones con animales continúan. En Småland, se pensaba que los cisnes competían por volar más y más lejos hacia el norte y los que lo lograban, quedaban congelados en el cielo. La aurora se formaba cuando aleteaban para liberarse. En Estonia, por su parte, recurrían a animales marinos como la ballena. Según sus creencias ancestrales, las ballenas pintaban el cielo con sus chorros de agua. De hecho, estas tradiciones se alimentaron tanto del imaginario popular, que en ocasiones aparecieron elementos más exóticos como los cocodrilos.

Muchas historias las tachaban de peligrosas, y portadoras de malos augurios, especialmente las rojas. Había quienes no permitían que sus hijos saliesen fuera cuando había aurora por si les quemaba el pelo. De hacerlo, tenía que ser con un gorro. Se relataban incluso casos de gente asesinada a manos de las luces del norte, por hacer burla de las mismas.  Cuando tomaba el rol de Cassandra, la aurora precedía toda clase de catástrofes, si bien los incendios eran su especialidad. El color rojizo de las luces llevaba a imaginar ciudades en llamas, lo cual era un riesgo con el que convivían ya que la mayoría de las casas eran de madera.

En algunas zonas del norte de Europa, Asia y América, sostenían que las auroras eran una buena residencia para los muertos, especialmente para aquellos que habían hallado su fin de forma violenta o demasiado temprana. En otras, pensaban que los espíritus lo pasaban en grande. Los esquimales de  Groenlandia y norte del Canadá los imaginaban jugando al fútbol con un cráneo de morsa. Por este motivo, su nombre para la aurora es aqsalijaat, que significa el rastro de aquellos que juegan al fútbol. En la isla de Baffin se dice que el propio cráneo de morsa lo encontraba tan divertido que hacía castañear sus mandíbulas. Lo que no resultaba tan entretenido o gracioso de esta visión era que aquellos que contemplaban el fútbol espiritual corrían el peligro de que el simpático cráneo les arrancase la cabeza.

Los lapones consideraban que existía una conexión entre el clima y las auroras. Como servicio de predicción meteorológica, su llameo en lo alto del cielo anunciaba un tiempo caluroso. Pero al tener poderes mágicos no se limitaba a esta utilidad y también servía para influir en el clima. Había diferentes métodos. En Kvikkjokk, por ejemplo, se entonaba un cántico que empezaba: “gokseth (aurora), lipi, lipi”. Lipi es la abreviatura de lihphuit que significa aleteo.

Para acabar de dificultar el asunto cabe decir que no todo el mundo estaba conforme en que el revoloteo de una aurora significase un clima cálido, algunos pensaban que se acercaba el frío y otros que habría tormenta. Es definitiva, en lo que estaba de acuerdo la mayoría es que indicaba un cambio de tiempo.

Algunos observadores de auroras están convencidos que tienen sonido. Esto, a priori, sería imposible si, tal como defienden, las “han escuchado” al mismo tiempo que contemplaban las fluctuaciones luminosas. Puesto que la velocidad de propagación del sonido es mucho menor que la de la luz, no puede existir sincronización entre ambos efectos (como ocurre con el rayo y el trueno).

Suponiendo una aurora que se halle aproximadamente a 100 kilómetros de la superficie de la tierra el sonido se percibiría casi cinco minutos después que la  luz.

Todas estas creencias que pueden resultarnos muy lejanas, no lo son tanto. Sin ir más lejos, en nuestro siglo, los Indios y Lapones, que viven actualmente en las regiones donde se da más el fenómeno, aún le guardan cierto respeto. Las personas mayores recuerdan como se obligaba a los niños a portarse bien y permanecer en silencio cuando había auroras. Incluso en Escandinavia y en Norteamérica, hay quien piensa que puede invocar a la aurora silbando pero se abstienen por el miedo de que resulte peligroso.

Sólo existe una manera de hacer frente a todas estas leyendas e interpretaciones, la ciencia, y es por ello que dedicaremos la tercera y última parte de la trilogía a estudiar las teorías que se han desarrollado en torno a las auroras.

11756317856_aa2e2b7b21_o

 Los artículos de “Trilogía de las Auroras Polares: Las Crónicas (I), Las Leyendas (II) y Las Teorías (III)” han sido galardonados con el Premio “It´s Science Bitches” de Emilio Capitel

premio

Publicado en Geofísica | Etiquetado | 3 comentarios

Trilogía de las Auroras Polares (I): Las Crónicas

13990589591_56a6672ca6_o

Las auroras polares son uno de los fenómenos más fascinantes que nos ofrece la naturaleza y han sido muchos, los que, atraídos por su belleza han sentido la necesidad de plasmarla. De la mano de sus testimonios vamos a conocer algunas de las auroras más bellas de la historia de la humanidad y cómo se sintieron nuestros protagonistas contemplándolas.

Para empezar desde el principio, deberemos remontarnos 30.000 años antes de nuestra era. Las pinturas rupestres de las paredes y techos de las cuevas de la Francia meridional parecen registros de auroras. El hombre de cromañón, por tanto, pudo ser el primero en evocarlas.

Cromañón: "Macaroni" puede ser la representación más temprana de una aurora (30.000 A.C.)

Cromañón: “Macaroni” puede ser la representación más temprana de una aurora (30.000 A.C.)

Las culturas antiguas, por su parte, dejaron descripciones de sucesos celestes que corresponden, sin duda alguna, a auroras. El documento escrito de mayor antigüedad del que se tiene referencia, data del año 2.600 AC. Su contenido relata la siguiente historia: “Fu-Pao, la madre del Imperio Amarillo Shuan-Yuan, vio un fuerte rayo moviéndose alrededor de la estrella Su, que pertenece a la constelación de Bei-Dou, y la luz iluminaba toda la zona. Después de lo cual quedó embarazada.” El pueblo chino, para nombrarla, se valía de términos característicos del fuego y de los animales, especialmente del dragón. El rayo, que figura en este pasaje, era uno de los nombres que empleaban a menudo.

Por lo que se refiere a la primera descripción conservada y digna de crédito, se encuentra en las tablillas de arcilla de Babilonia. Los astrónomos reales registraron en estas, todas las observaciones efectuadas durante el trigésimo séptimo año del reinado de Nabucodonosor II, rey de Babilonia. La fecha exacta del suceso fue la noche del 12 al 13 de Marzo del año 567 AC, según el calendario juliano, y en la tablilla se lee: “en la noche del 29 [calendario lunar], apareció una llamarada de resplandor rojizo por el oeste; dos doble-horas…”. Por desgracia, el resto del texto se ha perdido. Cabe destacar que en aquella época la latitud geomagnética de Babilonia era, aproximadamente, 41ON frente a los 27,5ON actuales, lo que permite suponer una mayor incidencia de auroras que en la actualidad.

Otro testimonio más controvertido es el relato del Antiguo Testamento sobre la visión del profeta Ezequiel (I: 1-28) “el año treinta, el cuarto mes, a cinco del mes (probablemente 593 AC), cuando yo restaba entre los deportados a orillas del rio Kebar se abrieron los cielos y percibí visiones divinas.  Y miré y he aquí que un viento tempestuoso venía del norte, una gran nube y un fuego inflamado que brillaba a todo su alrededor, y en medio de él una especie de electro [que salía] del medio del fuego”. A continuación habla de cuatro extraños seresy su relato prosigue: “En medio de tales seres aparecía una visión como de brasas incandescentes, como visión de antorchas que se paseaba entre los seres y un resplandor como fuego y del fuego salían relámpagos”. En el resto de la narración se hace hincapié en resplandores, fuegos y fulgores. Si bien ha sido considerado por diversos autores como la descripción de una aurora, otros tantos opinan que tal interpretación es altamente especulativa.

Los griegos creían que Apolo era el creador de las luces del norte y, por las numerosas crónicas que nos dejaron, parece que éste se prodigó en los cielos de la Grecia clásica. Se pudieron ver auroras en Atenas los años 479 y 466 AC, en toda Grecia en 372 y 348 AC y cerca de Corinto el 343 AC. Entre los autores de los escritos se encuentran personajes tan notables como Aristóteles (Meteorologica, 338 AC), Anaxágoras (fragmento, siglo V AC) y Anaxímenes de Mileto (Sobre la naturaleza, perdido, siglo VI AC). Pero también trataron el tema Jenofonte, quien habló de “la acumulación de nubes ardientes en movimiento” e Hipócrates y Esquilo, que pensaban que eran sólo un reflejo de la luz del sol.

De entre las citadas, la descripción que merece una mención especial es la de Aristóteles:

“A veces, en una noche clara pueden verse una serie de imágenes tomando forma en el cielo, como ‘simas’, ‘fosos’ y colores rojo sangre. De nuevo, éstos tienen la misma causa.

Puesto que hemos demostrado que el aire de más arriba se condensa y prende fuego y que su combustión produce a veces la forma de un fuego ardiente, a veces de ‘antorchas’ o estrellas en movimiento; por lo tanto, es de esperar que este mismo aire, en el proceso de condensación, asuma todo tipo de colores… La causa de la breve duración de estos fenómenos es que la condensación dura por un tiempo corto”.

En la civilización romana, la primera narración de una aurora se fecha en el 460 AC pero las más célebres por su contexto histórico, se produjeron más tarde. La primera de ellas tuvo lugar en el 44 AC, justo antes de que 23 puñaladas atravesasen el cuerpo de Cayo Julio César en la Curia del teatro de Pompeyo, donde se reunía el Senado de Roma. Tuvo tal intensidad que permitió ver a los soldados, tanto de infantería como de caballería.  La segunda, fue en el cielo de Palestina el año 70, cuando el emperador Tito Flavio Sabino Vespasiano, tras un asedio de cinco meses, conquistó Jerusalén y saqueó su templo. El arco de Tito en Roma, fue erigido por su hermano Domiciano para conmemorar esta victoria.

8656794116_df42399b31_o

En cuanto a los relatos, en sí mismos, los más interesantes corresponden a Séneca y a Plutarco. Este último, en su Moralia, hizo un resumen de los textos desaparecidos de Anaxágoras que mencionaban la aurora de 467 AC: “durante 70 días hubo una figura enorme y furiosa en el cielo. Era como una nube de llamas, que no se quedó en su posición, sino que se movió sinuosa y regularmente, de modo que los fragmentos brillantes volaban en todas direcciones y el fuego resplandecía como en los cometas. Esos fragmentos se desprendieron durante rápidos e inesperados movimientos”.

Séneca, por su parte, en el tratado Quaestiones Naturales (libro primero, siglo I) explicó los fuegos celestes de esta forma: “Es tiempo de considerar, brevemente, otros incendios  atmosféricos, de los cuales hay varias formas. A veces parpadea una estrella. A veces hay luces brillantes. A veces son inmóviles y se pegan a un punto, a veces giran. Se observan muchas clases de ellos. En algunos hay un gran hueco en el cielo rodeado por una corona como un agujero excavado en un círculo. Otros son como un enorme masa de fuego redonda, como un barril, con dardos o rayos en un solo lugar. En otros casos una parte del cielo se abre y se esconde– por así decirlo – y envía llamas. Los colores de todos estos fuegos son también muy variados: algunos son de color rojo brillante, algunos parecen una débil y pálida llama, otros tienen una luz blanca, ciertos tienen un color amarillo uniforme sin estallidos o rayos”….”¿Entonces, cómo empiezan? El fuego se enciende por la fricción del aire y es propulsado violentamente por el viento. Sin embargo no siempre el viento o la fricción son la causa. A veces el fuego es generado por ciertas condiciones favorables en la atmósfera. En el cielo hay muchos elementos, seco, caliente, terroso, entre los cuales se origina el fuego y fluye hacia abajo tras su propio tipo de combustible; en consecuencia, se mueve a gran velocidad”…. “Entre estas luces también se puede incluir un fenómeno que con frecuencia leemos en la historia: el cielo parece estar en llamas. A veces su brillo está tan alto que parece estar realmente entre las estrellas. A veces las luces están tan bajas que dan la ilusión de un fuego a cierta distancia. Durante el reinado de Tiberio Julio César Augusto (14 – 37) los vigías se apresuraron en ayuda de la colonia de Ostia como si estuviese en llamas, ya que a lo largo de casi toda la noche hubo un resplandor en el cielo, amorfo, como el de un espeso humo de un fuego. Con respecto a estos fenómenos, nadie duda que tienen la llama que muestran; hay una sustancia definida en ellos”.

Otro hecho histórico que parece evocar la aparición de una aurora fue la salvación de la ciudad de Bizancio frente al sitio de Filipo, rey de Macedonia. En el 360 A.C., Filipo quiso aprovechar el factor sorpresa para la conquista. La vigilancia nocturna de las murallas era mucho menor y la oscuridad les facilitaría la toma de Bizancio sin ser vistos. Pero el plan se torció por la aparición de una luz en forma de luna creciente que iluminó el paisaje dejando a los invasores al descubierto. Para conmemorar el acontecimiento se acuñó una moneda con forma de media luna que, sin embargo, no parece representar a nuestro satélite. Su orientación es errónea vista desde la región mediterránea. Si además se tiene en cuenta que la luz de la luna, sin nieve, no es suficientemente brillante para provocar la iluminación que se explica en la historia, todo hace suponer que la representación corresponde a un arco auroral.

A partir de los testimonios con los que se cuenta, da la impresión de que este suceso presentaba una cierta tendencia a adornar hechos memorables. Por ello, no es de extrañar que también se relacionase la aurora del 3 de marzo de 451 en Francia con la derrota de Atila frente al general romano Aecio en la batalla de los Campos Cataláunicos, en Châlons-en-Champagne, que se libró durante los últimos días de junio de 451, en la margen izquierda del rio Marne.

A partir de la caída del Imperio Romano de Occidente, se abrió un periodo de escasas referencias  en Europa. En el siglo VI, San Gregorio de Tours escribió que las luces del norte eran “…tan brillantes que se podía pensar que el día estaba a punto de amanecer”. En Gran Bretaña, las crónicas se remontan al año 555 y existe una descripción muy detallada de la que tuvo lugar en 585, que fue la más intensa y violenta del siglo VI. En este territorio, la mayoría de auroras ocurridas entre los años 500 y 1100 pueden encontrarse en Chronicle of Scotland y en los relatos vikingos.

La disminución de sucesos registrados en la Edad Media se recuperó hacia el 1500 coincidiendo con la invención de la imprenta que facilitó su mayor y más rápida difusión. El primer documento impreso conocido data de 1490. Su nombre, “Aurora boreal”,  fue acuñado en el siglo XVII, de forma independiente, por el matemático y astrónomo francés Pierre Gassendi por una parte y por Galileo Galilei y su estudiante Guiuducci por otra. Lo emplearon para describir el fenómeno que se produjo el 12 de setiembre de 1621, tras el cual se inició un nuevo periodo de carencia hasta 1715. Cabe señalar que durante este tiempo la actividad solar fue muy baja y se observaron poquísimas manchas solares, lo que se conoce como mínimo de Maunder.

11754954873_1e5e798c17_o

La aurora del 17 de marzo de 1716 fue especial  tanto por ser la más espectacular del siglo XVIII como por contar con un observador de excepción: Sir Edmund Halley. El astrónomo dio la primera explicación científica de este fenómeno, que sigue teniendo validez actual: “Los rayos aurorales son debidos a las partículas, que son afectadas por el campo magnético; los rayos son paralelos al campo magnético de la tierra y la forma, semejante a una bóveda, es debida a los fenómenos de perspectiva”.

Desde entonces, este bello suceso celeste siguió apareciendo regularmente. Algunas de las más impresionantes, que se vieron desde amplias regiones tuvieron lugar el 11 de febrero de 1958, en la que luces de 2000 km de anchura rodearon el ártico desde Oregón (44O N, 121O W) hasta New Hampshire (44O N, 71O W) y el 13 de marzo de 1989, en la que se iluminó todo el cielo de un rojo brillante y fue vista en Europa y Norteamérica llegando a latitudes tan bajas como la de Cuba.

En la actualidad, nos encontramos en el ciclo solar vigésimo cuarto desde que en 1755 empezó a controlarse sistemáticamente la actividad de las manchas solares. Aunque, según los cálculos el ciclo comenzó el 4 de junio de 2008, la actividad fue mínima hasta principios de 2010. De hecho, durante los años  2008, 2009 y hasta la mitad de 2010, el número de manchas solares observadas fue tan escaso que algunos científicos llegaron a postular un mínimo de Maunder. Sin embargo, el 3 de abril de 2010 se registró la primera eyección de masa coronal (EMC) del ciclo, que provocó una intensa  tormenta geomagnética al impactar con la Tierra dos días después. Cuatro meses más tarde, el 1 y 2 de agosto, se vieron múltiples filamentos magnéticos, estallidos de radio y cuatro EMC orientadas hacia la Tierra que causaron nuevas tormentas geomagnéticas. A consecuencia de ellas, las primeras horas de la mañana del 4 de agosto de 2010 se produjo una aurora boreal que fue visible en latitudes tan al sur como Dinamarca, a unos 56º de latitud N. En Estados Unidos pudo ser observada en Michigan (44O20´N) y Wisconsin (44O30´N). Las luces fueron verdes debido a la interacción de las partículas solares con átomos de oxígeno.

A partir de entonces, han habido y sigue habiendo periodos de intensa actividad, con oscilaciones temporales. Algunos de los más destacados han sido recogidos por los medios de comunicación, no sin cierto alarmismo. En agosto de 2011 tuvieron lugar tres eyecciones combinadas de masa solar que produjeron auroras notables tanto en el hemisferio norte como en el sur. Las boreales llegaron a verse en USA (Utha, Colorado, Oklahoma y Alabama), Inglaterra, Alemania y Polonia y las astrales en Sudáfrica, y el sur de Chile y  de Australia.

En  los primeros meses de 2014 se han producido numerosas auroras visibles en las altas latitudes, Finlandia, Noruega, Rusia… por lo que, si el año sigue tan fructífero, se espera que, a partir de septiembre, puedan observarse más. Debe tenerse presente que el mejor periodo para contemplar el espectáculo celeste va del equinoccio de otoño al de primavera. En esas fechas, muchas son las personas que viajan al norte dispuestos a dejarse seducir por las auroras, decididos a inmortalizar en una imagen, un inolvidable encuentro con la naturaleza.

11755823023_3663cdef60_o

Todas las fotografías de la entrada son obra de Paco Bellido (@ElbesoenlaLuna). Para poder disfrutar de su obra no dejéis de visitar sus blogs El beso de la luna y Cuaderno de viaje.

Los artículos de “Trilogía de las Auroras Polares: Las Crónicas (I), Las Leyendas (II) y Las Teorías (III)” han sido galardonados con el Premio “It´s Science Bitches” de Emilio Capitel

premio

Publicado en Geofísica | Etiquetado | 6 comentarios